
Why fuzz about
security?

Mathias Payer
infosec.exchange/@gannimo

Fact 1: Software Has Bugs

2

Fact 2: Many Bugs are Exploitable

3

Fact 3: Software is Incredibly Complex

Google Chrome: 76 MLoC

Gnome: 9 MLoC

Xorg/Wayland: 1 MLoC

glibc: 2 MLoC

Linux kernel: 17 MLoC

4

Chrome and OS
~100 MLoC,
27 lines/page,
0.1mm/page ≈ 370m

Margaret Hamilton
with code for Apollo
Guidance Computer
(NASA, ‘69)

Software Security: Key Research Questions

● RQ1: Efficiently detect security violations
● RQ2: Automatically generate test cases
● RQ3: Scale testing to large source repositories
● RQ4: Effectively test complex interfaces
● RQ5: Mitigation co-design based on feedback

strcpy_chk(buf, 4, str);

vuln("AAAABBBB");

vuln("ABC");

CHECK(fun, tgtSet);
5

Software Testing
● Goal: prune bugs
● A tool for developers

Mitigation
● Goal: stop exploitation
● Last line of defense

Compartments
● Goal: least privilege
● Divide & conquer security

Fuzzing in a Nutshell

7

$./testme --help
Usage: testme <int32_arg>

$./testme AAAA
Please enter an integer!

$ cat fuzzer.sh
while :
do
 len=$(($RANDOM % 255))
 input="$(dd if=/dev/urandom bs=$len count=1)"
 ./testme $input || echo $input >> crash_seeds
done

Fuzzing: Automated (Fuzz) Testing

8

Run ProgramInput Crash

Test cases must reach bugs
◦ Exploration through coverage-guided fuzzing

The fuzzer must detect bugs
◦ Exploitation through sanitization and triaging

Performance is key (zero sum game)!
◦ Finite cycles/time, must spend resources wisely!

Effective Fuzzing 101

9

Greybox Fuzzers: A Genealogy

datAFLow: Toward a Data-Flow-Guided Fuzzer. Adrian Herrera, Mathias Payer, and Antony Hosking. In TOSEM'23
FishFuzz: Catch Deeper Bugs by Throwing Larger Nets. Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren,
He Wang, Chunjie Cao, Yuqing Zhang, Flavio Toffalini, and Mathias Payer. In SEC'23

Spill the TeA and TEEzz: Trusted Applications on Android Devices

11

From Crashes to Ranked Bugs

Fuzzing produces (many) crashes, mapping to real bugs

● Programmers are overwhelmed by large amount of crashes
● Crashes need to be distilled into bugs to be useful
● Bugs need complete descriptions

Our findings

● Minimizing path length of seeds enables similarity matching
● Igor groups 254’000 crashes across 39 bugs into 48 distinct clusters
● Evocatio summarizes bug capabilities, bypasses 7 out of 16 CVEs

Igor: Crash Deduplication Through root-Cause Clustering Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh,
Chaojing Tang, Chao Zhang, and Mathias Payer. In CCS’21.
Evocatio: Conjuring Bug Capabilities from a Single PoC Zhiyuan Jiang, Shuitao Gan, Adrian Herrera, Flavio Toffalini,
Lucio Romerio, Chaojing Tang, Manuel Egele, Chao Zhang, and Mathias Payer. In CCS’22. 12

Fuzzing is Maturing. What’s next?

13

Metrics for starting seed corpora and how to generate them

Cross-distillation to reuse seeds among targets

Stateful programs and network protocols

Handling (diverse) peripherals for embedded systems

Helping developers cope with inferred information

Distinguishing exploration and exploitation phases

. . .

Conclusion

14

Join us on this research journey!

Join the Software Security Fun Ride!

Bugs are ubiquitous and a (re-)growing resource:

● Software testing weeds them out early
● Mitigations stop attack classes
● Compartmentalization limits their impact

Our research focuses on:

● Specializing fuzzing to new environments
● Enable developers to “understand” bugs
● Customize mitigations per-program
● Infer strong compartmentalization mechanisms

Mathias Payer (infosec.exchange/@gannimo) 16

